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Abstract 

Weakest-link failure prediction models according to 
Weibull, Stanley and Lamon have been implemented 
in a post-processing program supplementing a finite 
element modelling code. Failure predictions for equi- 
biaxial loading from uniaxial bending test data reveal 
significant differences between the various formula- 
tions. The choice of  a particular failure model for a 
particular material therefore has to be validated by 
additional information, e.g. by fractography or 
micrography. 

Modelle zur Vorhersage des Versagens nach dem 
Prinzip des gr6flten Fehlers gemdfl Weibull, Stanely 
und Lamon wurden zur Ergiinzung eines Finite- 
Elemente- Verfahrens in der Qualitiitskontrolle heran- 
gezogen. Versagensvorhersagen fiir gleichmiiflige 
zweiachsige Belastung aus uniaxialen Biegeversuchs- 
daten zeigten zwischen den verschiedenen Modellen be- 
triichtliche Unterschiede. Die Wahl eines bestimmten 
Versagensmodells fiir ein bestimmtes Material muff 
daher durch zusiitzliche Informationen, wie z.B. 
Fraktographie und Mikroskopie verifiziert werden. 

On a rkalisO l'implentation de modOles de prkvision de 
rupture par maillon le plus faible selon Weibull, 
Stanley et Lamon dans un programme post-opkratoire 
complOtant un code de modOlisation par Olkments finis. 
Les valeurs exprimant les pr~visions de rupture en 
chargement equi-biaxial obteunes par essai en flexion 
uniaxiale sont sensiblement diffkrentes selon la 
formule utilisOe. Le choix d'un modOle de rupture 
particulier pour un mat&iau donn~ doit donc ~tre 
complktO par des informations eomplkmentaires 

* Also affiliated with Philips Research Laboratories, PO 
Box 80000, 5600 JA Eindhoven, The Netherlands. 

obtenues, par exemple par fractographie ou 
micrographie. 

I Introduction 

The determination of the probability of failure of 
brittle ceramic components is the object of both 
experimental and theoretical studies. Usually a 
weakest-link model is applied with parameters 
determined from experimental data. A number of 
examples of the application of the well-known 
models of Weibull, Stanley and Lamon (amongst 
others) have been described in literature. 1-s Test 
methods to gather experimental data are the three- 
and four-point bend tests, the tensile test, the ball- 
on-ring biaxial bending test, e tc .  6 '8 '9  Ideally, the 
parameters determined from one particular test 
should allow the use of the model in situations with a 
different geometry and/or a different stress state. 
However, the occurrence of multiple defect types 
does not always allow this type of extrapolation. The 
criticality of a particular defect can depend upon the 
stress state a component  is subjected to. Moreover, it 
may be necessary to distinguish between different 
types of defects, which have their own statistical 
distribution, s e.g. volume and surface defects. In 
order to be able to study the failure probability of a 
ceramic component,  with arbitrary geometry and 
stress state, a computer code was developed dealing 
with the weakest-link models as proposed by 
Weibull, Stanley and Lamon. The main objective 
was to obtain a tool for the comparison of the 
predictions of these models. In this paper some 
aspects of the computer program are discussed. In 
addition an example of its application is given in an 
evaluation of the predictions of the models men- 
tioned above for the biaxial ball-on-ring test with 
material data taken from uniaxial experiments. 
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2 Weakest-link Failure Probability Models 

The models of Weibull, Stanley and Lamon were 
taken as the starting point in the development of the 
computer program. Other models can easily be 
entered in the current version of the program if 
necessary. The models of Weibull, Stanley and 
Lamon are derived from a weakest-link principle: 

A/"f ----- 1 - exp {--Sg(S)dS} (1) 

where APf denotes the failure probability for a small 
homogeneously stressed volume or surface element. 
The integrand g(S) dS is the number of defects with 
strengths between S and S + dS. According to the 
weakest-link principle, for the entire component 
considered, relation (1) yields: 

pV = 1 - exp { - 

pa  = 1 -- exp { - 

fvEfgV(S)dS]dV} (2) 

LEIgA(S)dSIdA} (3) 

where pV and P~ denote the failure probability due 
to volume and surface defects, respectively. 

Assuming only one defect type for the volume and 
the surface of a component for the models of 
Weibull, Stanley and Lamon, relations (2) and (3) can 
be elaborated for the case of an isotropic defect 
distribution. The resulting equations can be written 
most conveniently in the four-parameter notation 
introduced by Stanley et aL: 3 

pV = 1 - exp 

Pr a = 1 - exp 

(LI~mv m 
{--\m'J V u ( - ~  m) ]~(V)} (4) 

\m'J A , ( % )  Z(A)} (5) 

where m is the Weibull modulus, Snom a given 
nominal or reference stress, S u the strength per unit 
volume V~ = 1 or unit surface A u = 1. The values of 
m, Snu m and S~ may be different for volume and 
surface defects. Z(V) and Z(A) are the so-called 
stress-volume and stress-surface integrals, respec- 
tively. Denoting the principal stresses with $1, $2 
and S 3 (S~ > $2 > $3), the expressions for Z(V) and 
Z(A) for the failure probability models can be 
written as follows: 

Model of Weibull (normal stress criterium) 

z ( v ) = l I ( S l " ~ m r ± I  ]dV (6) 
kSnom] L 47z dno g~ dBu 

z(A)=Af  {s' =F±I\snom] l_4n d,u g'mdB"l dA (7) 

g = n~._Sn (8) 

I! ° :l S_= $2/$1 n f = [nln2n3] (9) 
0 S3/S 1 

where B u is the surface of a sphere with radius 1 and 
unit outward normal n. 

Model of Stanley (independent stress criterium) 

1 Sx m 

( $2 )m (. $3 .X~mld V (10) 
+ \H~-nom- / + \H3Snom,] J 

1 ~~(A)=..~IAI ( Sl I m 
/\H1 Snore/ 

+ \ ~ j  -t-kHa~nom) i d A  (11) 

where H I ,  H 2 and H a are weight factors. 

Model of Lamon (maximum strain energy release 
rate criterium) 

Z(v ,= l f v (S1Y"FI~  c h ' d B u l d V  (12) 
kSnom] L 4n .Jno 

1 f ( S 1 ~mf 1 ~ hmdguldA (13) Z(A) 
\S-ZoJ v,o 

h 4 = (nT~2S n)2 + 4(nT~2 n ) ~ T ~ 2  4(nT~n)4 . . . .  
(14) 

Relations (4)-04) served as a starting point for the 
development of the computer program discussed in 
Section 3. 

3 FAILUR: A Post-processor for Failure Probability 
Calculations 

3.1 General aspects 
Evaluation of the relations given in Section 2 by 
analytical means is only possible for a limited 
number of (thermo-)mechanical problems. How- 
ever, as indicated by Stanley, Lamon and Gyen- 
keyesi (amongst others), 3'7'x° a more general tool 
can be developed, making use of the results of a finite 
element package. Using the stresses calculated at 
element level, the integrals given in Section 2 can be 
evaluated easily and with sufficient accuracy. 
Therefore a computer program, or more precisely, a 
post-processor was written (in Fortran-77), which 
uses the output of the finite element package 
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SYSTUS.11 The relations given in Section 2 have 
been implemented for two-dimensional  (plane 
stress, plane strain and axisymmetric) and three- 
dimensional (bricks, tetrahedra) elements. F A I L U R  
produces the failure probability of the component  
with user-defined values for material parameters like 
m, Su, etc. As pointed out by Stanley & Chan 5 the 
failure probability cannot increase with decreasing 
stress. Therefore F A I L U R  incorporates an option 
to keep the failure probability at a Gauss point of  an 
element constant at the value for the highest applied 
stresses in the case the stresses decrease. 

For  the evaluation of  the stress-integrals the 
stresses at the Gauss points of  the elements are used, 
as this has proven to yield more accurate results 
compared to the stresses at the centroid of the 
element. 12 

3.2 Analysis of the four-point bend test 
In order to illustrate the use of  F A I L U R  and to pay 
attention to some important  aspects for practical 
calculations, the four-point  bend test will be 
discussed (Fig. 1). 

For  a specimen with dimensions length × width x 
height = l x b x h, such that the stress field can be 
considered as uniaxial, the expressions for the stress 
integrals given in Section 2 for the model of  Stanley 
reduce to: 4 

Model of Stanley 

m + 2  X;s(v) - 
4(m + 1) 2 

(15) 

ES(A) - 4(m + 1) 2 1 -~ 1 +-h/b 

Similarly for the models of  Weibull and Lamon one 
can derive: 

Model of Weibull 

ZW(v) = Es(v)IW(m) EW(A) = ZS(A)IW(m) (16) 

f~ /2 1 (17) IW(m) = cos 2m ~ sin ~ d0~ - 2m + 1 

Model of Lamon 

EL(V) = Xs(V)IL(m) EL(A) = ZS(A)lL(m) (18) 

Fig. 1. 

P 

The four-point bend test with specimen dimensions 
length × width × height 1 × b × h. 

models meets the following conditions for both 
volume and surface defects: 

(Su)L = (Su)S(iL(m)) X/m (20) 

(Su) w = (s,)S(IW(m))l/" (21) 

and if the moduli m are identical for all models ((Su) s 
is the unit strength for the model of  Stanley, etc.). In 
the remainder of  this paper it will be assumed that 
the parameters in the various models satisfy these 
conditions and that they are identical for both 
volume and surface defects (which merely simplifies 
the analysis, but is not essential). Assuming that (Su) s 
has a value of  200 N / m m  2, elaboration of  relations 
(20) and (21) yields the required combinations of  
material parameters given in Table 1 for m = 5, 10 
and 20. With the parameters given in Table 1, the 
models of  Stanley, Weibull and Lamon give the same 
results if an uniaxial stress field is assumed. A more 
detailed analysis may show differences as shear 
stresses will also be present. Here the finite element 
method can be a useful tool. With the mesh shown in 
Fig. 2 a plane stress analysis was carried out. The 
mesh contains 224 eight-node isoparametric volume 
elements (to model volume defects) and 64 three- 
node isoparametric surface (skin) elements (to model 
surface defects). Note that only half the specimen 
needs to be modelled because of its symmetry. The 
following parameter  values were chosen: 

l = 5 0 m m  b = 4 . 5 m m  h = 3 " 5 m m  
V =  787"50mm 3 A = 831"50mm 2 
E = 5 8 - 6 G P a  v=0 .22  

S n o  m = 136.05N/mm 2 (maximum tensile stress 
according to the theory with uniaxial stress 
field) 

H l = H 2 = H 3 = - - 8  

f f /2 IL(m) = (1 + sin 2 2~) m/4 cos m ~ sin ~ d~ (19) 

F rom relations (4), (5) and (15) to (19)it is readily 
found that the models considered yield the same 
prediction for the failure probabilities for the four- 
point bend test if the unit strength Su for the various 

Table 1. Required combinations of material parameters for 
(Su) s = 200 N/mm 2 

rn (1/m)! lW(m) I L (m) (Su) w (S~) L 

5 0"918 2 0'0909 0'301 6 123.8 157-4 
10 0-951 3 0"047 6 0-249 3 147"5 174-1 
20 0"9735 0'0244 0"2367 166"1 186'1 
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P Table 3. The relative errors  in the calculated s t ress-volume 
integrals for the model  of  Stanley for coarse and  fine meshes 

Errors Coarse mesh Fine mesh 

Z(V) m = 5 - 0 ' 1 6  0"36 
m = 10 - 7 ' 5 7  0"15 
m = 20 - 43"08 - 6"23 

Fig. 2. Finite element mesh for plane stress analysis of  the 
four-point  bend test. 

As an example of the results obtained with SYSTUS 
and FAILUR in Table 2 the theoretical values for 
the stress-volume and stress-surface integrals 
(relations (15) to (19)) are compared with the 
numerical values. 

As was to be expected the calculated results for the 
stress integrals agree well with the theoretical values. 
The differences found can be caused by the following: 

(1) The finite element method yields a non- 
uniaxial stress field in contrast to the 
theoretical analysis. As the shear stresses are 
small (typically an order of magnitude (h / l )  2 

smaller than the bending stresses), their 
influence is of minor importance. 

(2) All necessary integrations are done numeri- 
cally leading to small errors, which may be 
neglected, however. 

(3) The finite element method yields an approxi- 
mation of the stresses. Better accuracy for 
both the stresses and the stress integrals is 
generally obtained by mesh refinement. This 
aspect will be considered further hereafter. 

To analyse the influence of mesh refinement, the 
mesh shown in Fig. 2 ('fine mesh') was modified by 
taking only half the number of elements for the 
height of the specimen ('coarse mesh'). To illustrate 
the influence of this modification, Table 3 shows the 
stress-volume integrals for the model of Stanley for 
m = 5, 10 and 20. Clearly for higher values of m, a 

coarse mesh yields poor results for the stress 
integrals (and the failure probabilities). Use of a 
sufficiently fine mesh is therefore indispensable. The 
same holds when applying lower order elements (e.g. 
four-node elements instead of eight-node elements). 
As is generally accepted with lower-order elements a 
finer mesh is required to achieve accurate results. 

4 Prediction of Biaxial from Uniaxial Strength 
Data 

To illustrate the use of the program FAILUR 
(Section 3) and to investigate the influence of the 
choice of a particular failure model, some calcula- 
tions have been carried out which will be described 
in this section. The starting point for these calcula- 
tions are the material parameters given in Section 3, 
which were chosen such that the models of Weibull, 
Stanley and Lamon yield the same prediction for the 
four-point bend test. A straightforward analysis will 
show that this is also true for the three-point bend 
test. These parameters can now be used to calculate 
the failure probability of a specimen in the ball-on- 
ring biaxial bend test. The ball-on-ring bend test has 
been described in detail by de With e t  al. 9 As shown 
in Fig. 3, a circular plate with radius R is loaded 
centrally with a force F. The plate is supported at a 
radius a. It has been shown 9 that the force F can be 
replaced by a uniform pressure p 

F 
p = ~ b  2 

Table 2. The theoretical  values for  the stress integrals for the models  of  Weibull,  Stanley and  
L a m o n  and  the relative errors  in the calculated values ( ( c a l c u l a t e d -  theoret ical) / theoret ical  x 

lOO%) 

z(v) Z(A) 

m = 5  m = l O  m = 2 0  m = 5 m = 10 m = 20 

Theory  Theory  
Weibull  0.004 4 0-001 2 0"000 3 Weibull  0'016 8 0"007 8 0"003 7 
L a m o n  0.014 7 0.006 2 0.002 9 L a m o n  0.055 9 0.040 9 0.036 2 
Stanley 0.048 6 0"024 8 0"012 5 Stanley 0.185 3 0.164 3 0.152 8 

Errors  Errors  
Weibull  0.34 0.13 - 5"81 Weibull  - 2-86 - 2.35 - 0'96 
L a m o n  0.38 0.17 - 6.24 L a m o n  - 2"86 - 2-39 - 1"43 
Stanley 0.36 0.15 - 6.23 Stanley - 0.00 - 0.88 - 1.39 
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Fig. 3. The ball-on-ring biaxial bend test. R =  specimen 
radius, a = support  radius, t = specimen thickness. 

where b is the radius of the circle the pressure acts on. 
The value of b can safely be taken as 

t 
b = -  

3 

with t as the plate thickness. The maximum tangential 
and radial stresses are found at the centre of the plate 
and are equal to: 

+ (1 + v) R 2 1 - (22) 

where v is Poisson's ratio of the specimen. For the 
calculations discussed in the remainder of this paper, 
the following parameter values were chosen: 

R - - 1 5 m m  a = 1 0 m m  t = l ' 5 m m  
b = 0 " 5 m m  E = 5 8 . 6 G P a  v=0 .22  

The stresses in the specimen were calculated using 
the axisymmetric mesh given in Fig. 4, which 
contains 410 eight-node isoparametric elements to 
describe the volume and 92 three-node isopara- 
metric skin-elements describing the surface of the 
specimen. With F A I L U R  the stress-integrals and 
the failure probability due to both volume and 
surface defects (which were assumed to have the 
same modulus  m and unit strength S,) were 
calculated. As in this case the stress-integrals do not 
depend upon the nominal stress S,o m, one stress 
calculation suffices to be able to generate the familiar 
Weibull-plot using eqns (4) and (5). As a typical 
example of  the outcome of the calculations in Fig. 5 

I 
Ip 

Fig. 4. 

I 

Finite element mesh for axisymmetric stress analysis of  
the ball-on-ring bend test. 
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Fig. 5. Weibull plot for surface defects with m = 10. - - ,  
Four-point  bend test; . . . .  , three-point bend test; . . . . .  , 
prediction model for Weibull biaxial bend test; 
predict ion model  of Lamon biaxial  bend test; . . . .  , 

prediction model of Stanley biaxial bend test. 

the results for surface defects for a modulus m = 10 
are given. Clearly the probability of failure for the 
ball-on-ring test (at the same nominal stress) is much 
smaller than for the three- and four-point bend test. 
It is remarkable, however, that the predictions for 
the models of Weibull, Stanley and Lamon show a 
marked difference for the ball-on-ring test, although 
they predict the same values for the three- and four- 
point bend test. 

This can further be illustrated by considering the 
mean nominal fracture stress ~'~nom which is defined 
by 

d p  r 
'~nom = fO dS~nom Sn°m dSn°m (23) 

For volume defects use of relation (4) yields 

Soom = S° (24) 

The predicted values for the various tests for volume 
defects are given in Fig. 6. It is clearly observed that 
the predictions for the biaxial bend test for the 

280' 

nom 

t 
160 

:,0 
1'0 1'5 2'0 
, , ~ m  

Fig. 6. The values for the mean nominal  fracture stress ~,o., 
for volume defects as a function ofm.  O,  Four-point  bend test; 
I1, three-point bend test; ×,  prediction model ofWeibul l  biaxial 
bend test; V ,  prediction model of  Lamon biaxial bend test; &,  

prediction model of  Stanley biaxial bend test. 



374 L. J. M. G. Dortmans, G. de With 

models of  Stanley, Weibull and Lamon show 
differences of  about 10% although they predict the 
same values for the three- and four-point bend test. 
Although these differences may seem rather small, it 
must be recognized that these small differences may 
lead to far larger differences in the predicted failure 
probabilities. This is easily demonstrated consider- 
ing relations (4), (5) and (24): 

P f = l - e x p { - ( l l ~ m ( S " ° m ~ ' l  (25) 
\ m  "} \Snom, ] ) 

When Pf is small ( l n ( 1 -  Pr) ~ - P f ) ,  for the same 
stress S.o m the failure probabilities Px and P2 of  
these two models, given their respective mean 
nominal fracture stress S 1 and S 2, are related by: 

P2 (S, '~  '~ (26) 
E \E: 

If $1 ~ 0"9S2 (as mentioned above) for a value of  
m = 10, PI "~ 2"87Pz and for m = 20, P1 ~ 8"22P2. 
This shows that the magnitude of  the differences in 
the failure probabilities may greatly exceed the 
magnitude of  the differences in the values for the 
mean nominal fracture stress. Hence the extrapola- 
tion of  uniaxial to biaxial strength data strongly 
depends upon the failure model selected (and also 
vice versa, of  course). Validation of  a particular 
weakest-link model for a particular ceramic compo- 
nent is therefore a necessity for reliable failure 
prediction. 

5 Concluding Remarks 

The calculation of  the probability of  failure of  
ceramic components  using finite element modelling 
has been implemented in a post-processor. Different 
failure models for both volume and surface defects 
can be applied. As has been shown in the example in 
Section 4, the values for the mean nominal  fracture 
stress predicted by the various models may differ 
only little. However, the failure probabilities predic- 
ted by the various models may differ significantly, 
especially for the lower stress range, which is of  
major interest for practical design purposes. 

With this numerical tool experimentally obtained 
strength data can be analysed to obtain an indica- 
tion about  the validity of  a particular failure model 
for a certain ceramic material. As has been shown in 
the example in Section 4 such a validation is 
necessary if strength data are to be extrapolated 
from one test to another. Whether  such a validation 
yields acceptable results is not  only a matter  of  

experimental accuracy, but it is also influenced by 
the possible occurrence of  multiple defect types 
which have to be detected and accounted for. 
Microstructural analyses therefore have an import- 
ant role in this validation process. Continuing 
research at the Centre for Technical Ceramics aims 
at such a validation process in which experimental 
results are being gathered and analysed with the 
numerical tool described here. 
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